Variations of the elephant random walk

نویسندگان

چکیده

Abstract In the classical simple random walk steps are independent, that is, walker has no memory. contrast, in elephant walk, which was introduced by Schütz and Trimper [19] 2004, next step always depends on whole path so far. Our main aim is to prove analogous results when only a restricted memory, for example remembering most remote step(s), recent or both. We also extend models cover more general sizes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random recursive trees and the elephant random walk.

One class of random walks with infinite memory, so-called elephant random walks, are simple models describing anomalous diffusion. We present a surprising connection between these models and bond percolation on random recursive trees. We use a coupling between the two models to translate results from elephant random walks to the percolation process. We calculate, besides other quantities, exact...

متن کامل

The Elephant Quantum Walk

Giuseppe Di Molfetta,1, 2, ∗ Diogo O. Soares-Pinto,3 and Sílvio M. Duarte Queirós4 Aix-Marseille Université, CNRS, École Centrale de Marseille, Laboratoire d’Informatique Fondamentale, Marseille, France Departamento de Física Teórica and IFIC, Universidad de Valencia-CSIC, Dr. Moliner 50, 46100-Burjassot, Spain Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

The Quasi-Random Walk

We present the method of the quasi-random walk for the approximation of functionals of the solution of second kind Fredholm integral equations. This deterministic approach efficiently uses low discrepancy sequences for the quasi-Monte Carlo integration of the Neumann series. The fast procedure is illustrated in the setting of computer graphics, where it is applied to several aspects of the glob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2021

ISSN: ['1475-6072', '0021-9002']

DOI: https://doi.org/10.1017/jpr.2021.3